Nessa postagem encontra-se a resolução da Prova de Matemática do concurso de admissão ao Colégio Naval (CN) de 2012-2013.
Um abraço e bom gagá!!!
O conteúdo do blog foi organizado no site www.madematica.mat.br
Assinar:
Postar comentários (Atom)
Poderia detalhar mais a questão 6
ResponderExcluirLeonardo, assista o vídeo do Professor Haroldo Filho no link https://www.youtube.com/watch?v=KN5XCZR_gLc.
Excluirobrigado....na questão 7 foi usada a relação de bezout ?
ExcluirProfessor, qual foi o método ou fórmula utilizado na questão 14 ?
ExcluirVeja a resposta abaixo à pergunta do Leonardo.
ExcluirProfessor, qual foi o método ou fórmula utilizado na questão 14 ?
ResponderExcluirLeonardo, utilizei o produto notável que está na resolução para tentar fazer aparecer o x^4+1. Essa é basicamente uma questão de fatoração e não de polinômios como parece. Para um aluno de ensino médio, que já sabe números complexos, a solução seria bem simples, bastaria substituir x pela raiz quarta de -1.
ExcluirProfessor, acredito que na 7 estaria anulada, pois para x=7 e y=-9, que sao inteiros o valor é 0. Abracos
ResponderExcluirEugênio, no enunciado ele pede o menor valor positivo, então zero não é um valor válido. De qualquer forma, obrigado pela observação.
Excluirmestre na questão 12, se o maior resto possível é q-1, como terá resto q^2 ?
ResponderExcluirJoão, observe que essa condição é considerada na resolução. Os valores válidos satisfazem q^2 menor que 26.
ExcluirProfessor, suas respostas estão muito diferentes das do gabarito do colégio naval..Não entendo o porque.
ResponderExcluirVerifique se a cor da prova cujo gabarito você está olhando é a mesma que eu resolvi. Há também questões que estavam com problemas no enunciado que aqui foram corrigidas.
ExcluirEste comentário foi removido pelo autor.
ResponderExcluirEste comentário foi removido pelo autor.
ResponderExcluirMais uma resolução FERA ! Valeu Madeira !
ResponderExcluirBoa dia, professor.
ResponderExcluirTeria como o senhor me explicar o que foi feito na parte que está marcada, por favor.
https://i90.servimg.com/u/f90/19/80/41/82/resolu13.png
Na desigualdade 0<=r<d, some 21d em todos os termos, obtendo 21d<= 21d + r < 22d. Como 21d + r =2012, então 21d <= 2012 < 22d. Depois é só trabalhar a desigualdade e encontrar o intervalo para d.
ExcluirBoa tarde, professor.
ExcluirMuito obrigado por me responder!
Entendi perfeitamente a questão agora.
Sempre ajudando...Obgd.Vi muita aulas sua no Promilitares.
ResponderExcluirShow!
ResponderExcluir